Abstract

Mechanical stability against buckling and water transport resistance through xylem vary with increasing tree height. To explore interspecific allometry based on morphological and physiological traits can play a crucial role in revealing their ecological adaptation. Four architectural traits (tree height, diameter at the breast height (DBH), crown width and crown depth) and seven functional traits (specific leaf area (SLA), leaf total carbon concentration (TC), midday leaf water potential, leaf δ13C and δ18O, wood density and xylem water transport efficiency) were measured in Schima superba, Acacia auriculiformis and Eucalyptus citriodora plantations in the subtropical region of China. The mechanical stability declined in the order of S. superba > A. auriculiformis > E. citriodora. Taller species at a given DBH had slender stems and narrower crowns. Smaller leaf δ18O and more efficient xylem water transport were observed in two taller tree species, A. auriculiformis and E. citriodora. Smaller SLA, higher leaf TC and larger leaf area indicated more carbon allocation to leaves of S. superba. The variations in architectural and functional traits with tree allometry among tree species may provide a more complete understanding of species-specific growth strategies in this subtropical region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call