Abstract

The coordinated interspecific variation in leaf traits and leaf lifespan is known as the leaf economic spectrum (LES). The limitation of CO2 diffusion to chloroplasts within the lamina is significant in C3 photosynthesis, resulting in a shortage of CO2 for Rubisco. Although Rubisco CO2/O2 specificity (SC/O) should be adaptively adjusted in response to the interspecific variation in CO2 concentrations [CO2] associated with Rubisco, SC/O variations across species along the LES remain unknown. We investigated the coordination among leaf traits, including SC/O, CO2 conductance, leaf protein content, and leaf mass area, across 23 woody C3 species coexisting on an oceanic island through phylogenetic correlation analyses. A high SC/O indicates a high CO2 specificity of Rubisco. SC/O was negatively correlated with [CO2] at Rubisco and total CO2 conductance within lamina, while it was positively correlated with leaf protein across species, regardless of phylogenetic constraint. A simulation analysis shows that the optimal SC/O for maximizing photosynthesis depends on both [CO2] at Rubisco sites and leaf protein per unit leaf area. SC/O is a key parameter along the LES axis and is crucial for maximizing photosynthesis across species and the adaptation of woody plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call