Abstract

By use of tree-tower and canopy-crane systems we studied variations in the water use, including transpiration, stomatal conductance, and leaf water potential, of the uppermost sun-exposed canopy leaves of four emergent dipterocarp species in an aseasonal tropical rain forest in Sarawak, Malaysia. Midday depression in stomatal conductance and leaf water potential was observed in all the species studied. Interspecific differences were clearly observed in the maxima of transpiration rates and stomatal conductance and the minima of leaf water potential among the four dipterocarp species. These interspecific variations were closely related to wood density and to factors affecting ecological patterns of distribution. Specifically, Shorea parvifolia and S. smithiana, both of which have a relatively low wood density for Dipterocarpaceae and are found on clay-rich soil, had a high transpiration rate in the daytime but had a large midday depression and a low leaf water potential. In contrast, Dryobalanops aromatica, which has a high wood density and is found in sandy soil areas, consumed less water even during the daytime. Dipterocarpus pachyphyllus, which has a high wood density and is found on clay-rich soil, stood intermediate between Shorea and D. aromatica in leaf water use. The two Shorea species had higher mortality than the others during the severe drought associated with El Niño in 1998, so daily pattern of leaf water use in each dipterocarp species might be correlated with its susceptibility to unusual drought events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call