Abstract

The dynamics of long-terminal-repeat retrotransposons in two poplar species (Populus deltoides and P. nigra) and in an interspecific hybrid, recently synthesized, were investigated by analyzing the genomic abundance and transcription levels of a collection of 828 full-length retroelements identified in the genome sequence of P. trichocarpa, all occurring also in the genomes of P. deltoides and P. nigra. Overall, genomic abundance and transcription levels of many retrotransposons in the hybrid resulted higher or lower than expected by calculating the mean of the parental values. A bioinformatics procedure was established to ascertain the occurrence of the same retrotransposon loci in the three genotypes. The results indicated that retrotransposon abundance variations between the hybrid and the mean value of the parents were due to i) co-segregation of retrotransposon high- or low-abundant haplotypes; ii) new retroelement insertions; iii) retrotransposon loss. Concerning retrotransposon expression, this was generally low, with only 14/828 elements over- or under-expressed in the hybrid than expected by calculating the mean of the parents. It is concluded that interspecific hybridisation between the two poplar species determine quantitative variation and differential expression of some retrotransposons, with possible consequences for the genetic differentiation of the hybrid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.