Abstract

To clarify the responses of radial growth of different tree species to climate change and its stability, we explored the relationships between radial growth and climate factors of larch (Larix olgensis) and spruce (Picea jezoensis var. komarovii) distributed at high altitude (1600-1750 m) on the northern slope of Changbai Mountain, using the chronological method. The results showed that the growth of larch was significantly positively correlated with the maximum temperature in June and negatively correlated with the precipitation in June. The radial growth of spruce was significantly positively correlated with the maximum temperature in May. Results from redundancy analysis showed that larch growth was mainly affected by summer temperature, while spruce growth was significantly restricted by spring temperature. During 1959-2014, the relationship between larch growth and summer temperature was relatively stable. For spruce, the correlation between radial growth and spring temperatures had gradually weakened since 1986, mainly due to the growth slowdown because of decreased maximum air temperature. Our results provide theoretical references for predicting the growth response of conifers at Changbai Mountain region in the context of climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call