Abstract

The polymorphism of SINE-containing loci reflects the evolutionary processes that occurred both during the period before the divergence of the taxa and after it. Orthologous loci containing SINE in two or more genomes indicate the relatedness of the taxa, while different copies may have a specific set of mutations and degree of difference. Polymorphic insertion can be interpreted with a high degree of confidence as a shared derived character in the phylogenetic reconstruction of the history of the taxon. The computational comparison of the entire set of SINE-containing loci between genomes is a challenging task, and we propose to consider it in detail using the genomes of representatives of squamate reptiles (lizards) as an example. Our approach allows us to extract copies of SINE from the genomes, find pairwise orthologous loci by using flanking genomic sequences, and analyze the resulting sets of loci for the presence or absence of SINE, the degree of similarity of the flanks, and the similarity of the SINE themselves. The workflow we propose allows us to efficiently extract and analyze orthologous SINE loci for the downstream analysis, as shown in our comparison of species- and genus-level taxa in lacertid lizards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.