Abstract

The naturally occurring human cytochrome c variant (G41S) is associated with a mild autosomal dominant thrombocytopenia (Thrombocytopenia Cargeeg) caused by dysregulation of platelet production. The molecular basis of the platelet production defect is unknown. Despite high conservation of cytochrome c between human and mouse (91.4% identity), introducing the G41S mutation into mouse cytochrome c in a knockin mouse (Cycs G41S/G41S) did not recapitulate the low platelet phenotype of Thrombocytopenia Cargeeg. While investigating the cause of this disparity we found a lack of conservation of the functional impact of cytochrome c mutations on caspase activation across species. Mutation of cytochrome c at residue 41 has distinct effects on the ability of cytochrome c to activate caspases depending on the species of both the cytochrome c and its binding partner Apaf-1. In contrast to our previous results showing the G41S mutation increases the ability of human cytochrome c to activate caspases, here we find this activity is decreased in mouse G41S cytochrome c. Additionally unlike wildtype human cytochrome c, G41S cytochrome c is unable to activate caspases in Xenopus embryo extracts. Taken together these results demonstrate a previously unreported species-specific component to the interaction of cytochrome c with Apaf-1. This suggests that the electrostatic interaction between cytochrome c and Apaf-1 is not the sole determinant of binding, with additional factors controlling binding specificity and affinity. These results have important implications for studies of the effects of cytochrome c mutations on the intrinsic apoptosis pathway.

Highlights

  • Thrombocytopenia Cargeeg (THC4; OMIM 612004) is one of two autosomal dominant thrombocytopenias associated with the only known mutations of the human cytochrome c gene (CYCS) [1,2]

  • We have previously reported that human G41S cytochrome c has up to 2-fold increased caspase-inducing activity compared to human WT cytochrome c [1,5] (S2A Fig)

  • Our results demonstrate that the well described electrostatic interaction between cytochrome c and apoptotic protease activating factor-1 (Apaf-1) is modulated by additional species-specific factors

Read more

Summary

Introduction

Thrombocytopenia Cargeeg (THC4; OMIM 612004) is one of two autosomal dominant thrombocytopenias associated with the only known mutations of the human cytochrome c gene (CYCS) [1,2]. Cytochrome c is an essential electron carrier in the mitochondrial respiratory chain and is a critical mediator of the intrinsic apoptosis pathway. In response to PLOS ONE | DOI:10.1371/journal.pone.0130292. Species-Specific Activity of Cytochrome c in Apoptosis role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call