Abstract
Plasma membrane monoamine transporter (PMAT) is a newly discovered monoamine transporter belonging to the equilibrative nucleoside transporter family. Highly expressed in the brain, PMAT represents a major uptake2 transporter that may play a role in monoamine clearance. Although human PMAT has been functionally characterized at the molecular level, rodent models are often used to evaluate PMAT function in ex vivo and in vivo studies. The aim of this study was to examine if there is potential species difference in the functional characteristics of PMAT between human, rat and mouse. A set of transfected cells stably expressing human PMAT (MDCK/hPMAT), rat Pmat (MDCK/rPmat) and mouse Pmat (Flp293/mPmat) were constructed. In MDCK/hPMAT, MDCK/rPmat and Flp293/mPmat cells, cellular localization analyses revealed that hPMAT, rPmat and mPmat are expressed and mainly localized to the plasma membranes of cells. The uptake of MPP+, serotonin and dopamine by MDCK/hPMAT, MDCK/rPmat and Flp293/mPmat cells was significantly increased compared with those by the mock transfection control. In contrast, two nucleosides, uridine and adenosine, minimally interacted with PMAT/Pmat in all species. The hPMAT-, rPmat- and mPmat-mediated uptakes of MPP+, serotonin and dopamine were saturable, with Km values of 33.7μM, 70.2μM and 49.5μM (MPP+), 116μM, 82.9μM and 231μM (serotonin), and 201μM, 271μM and 466μM (dopamine), respectively, suggesting similar substrate affinities between human and rodent PMAT/Pmat. The prototypical inhibitors, decynium 22 and GBR12935, also showed similar inhibition potencies between species. In conclusion, the present study demonstrated interspecies similarities in the functional characteristics of human and rodent PMAT/Pmat, which indicate a practical utility of rat and mouse animal models for further investigating and extrapolating the in vivo function of PMAT in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.