Abstract

During the development of human oral biofilm communities, the spatial arrangement of the bacteria is thought to be driven by metabolic interactions between them. Streptococcus gordonii and Veillonella atypica, two early colonizing members of the dental plaque biofilm, have been postulated to participate in metabolic communication; S. gordonii ferments carbohydrates to form lactic acid, which is a preferred fermentation substrate for V. atypica. We found that, during agar-plate coculture of these organisms, a signaling event occurs that results in increased expression of the S. gordonii alpha-amylase-encoding gene amyB. Confocal scanning laser microscopy of coculture flowcell-grown biofilms using human saliva as the sole nutrient showed that V. atypica caused S. gordonii to increase expression of a PamyB-'gfp transcriptional fusion in a spatially resolved fashion. In this open system, only those streptococci in mixed-species microcolonies containing V. atypica expressed GFP; nearby S. gordonii colonies that lacked V. atypica did not express GFP. In a closed system containing S. gordonii and V. atypica, flow cytometric analysis showed that S. gordonii containing the PamyB-'gfp reporter plasmid exhibited mean fluorescence levels 20-fold higher than did S. gordonii that had not been incubated with V. atypica. Thus, in a closed system where a diffusible signal can accumulate above a required threshold, interspecies signaling mediates a change in gene expression. We provide evidence that, in open systems like those that predominate in natural biofilms, diffusible signals between species are designed to function over short distances, on the order of 1 mum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call