Abstract

Differences in metal bioaccumulation among species make it difficult to compare biomonitoring results obtained using different marine bivalve species. To address this challenge and improve the interpretation of biomonitoring data, we studied the toxicokinetic mechanisms underlying these differences and developed a method to estimate seawater metal concentrations based on metal concentrations in the organisms. We transplanted six common species of oysters and mussels found in Chinese coastal waters into the Jiulong River estuary and monitored metal concentrations in the organisms, water, and suspended particles every three days over a six-week period. A one-compartment first-order toxicokinetic model was used to describe the relationship between metal bioaccumulation and metal concentrations in the environment. The model parameters, including aqueous uptake (ku) and dietary assimilation (kp) rate constants, and elimination rate constant (ke), were estimated using a Markov Chain Monte Carlo fitting method with a priori information from a systematic review we conducted. The toxicokinetic model successfully fitted the temporal changes in metal bioaccumulation in all six bivalve species and explained the interspecies differences. Using the calibrated models, we were able to calculate metal concentrations in the seawater at the bivalve collection sites and enable comparisons of biomonitoring data across multiple species. In conclusion, we have established a toxicokinetic framework to explain interspecies differences in metal bioaccumulation in six commonly found bivalves and provided a useful tool for interpreting biomonitoring data in coastal environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.