Abstract

The high failure rate of central nervous system (CNS) drugs is partly associated with an insufficient understanding of target site exposure. Blood-brain barrier (BBB) permeability evaluation tools are needed to explore drugs' ability to access the CNS. An outstanding aspect of physiologically based pharmacokinetic (PBPK) models is the integration of knowledge on drug-specific and system-specific characteristics, allowing the identification of the relevant factors involved in target site distribution. We aimed to qualify a PBPK platform model to be used as a tool to predict CNS concentrations when significant transporter activity is absent and human data are sparse or unavailable. Data from the literature on the plasma and CNS of rats and humans regarding acetaminophen, oxycodone, lacosamide, ibuprofen, and levetiracetam were collected. Human BBB permeability values were extrapolated from rats using inter-species differences in BBB surface area. The percentage of predicted AUC and Cmax within the 1.25-fold criterion was 85% and 100% for rats and humans, respectively, with an overall GMFE of <1.25 in all cases. This work demonstrated the successful application of the PBPK platform for predicting human CNS concentrations of drugs passively crossing the BBB. Future applications include the selection of promising CNS drug candidates and the evaluation of new posologies for existing drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.