Abstract
Increasingly serious data security and privacy protection issues make federated learning (FL) gradually evolve to be an important technology in the field of artificial intelligence (AI). Meanwhile, in consideration of the huge demands for network access and computing resources from massive IoT devices, ultra-dense edge computing (UDEC), which integrates mobile edge computing (MEC) and ultra-dense network (UDN), has turned out to be a promising network architecture in the era of 5G and even 6G. Facing requirements on ultra-low processing latency, performing FL for UDEC confronts many challenges, one of which is how to relieve the barrel effect caused by the difference in computing power of local devices while ensuring overall FL efficiency. Nevertheless, little work can be found in this area. Toward this end, the paper takes the lead in studying FL for UDEC, and proposes an inter-server collaborative federated learning method by grouping the servers and clients. Theoretical analysis and numerical results corroborate that our proposed inter-server collaborative method can significantly reduce the waiting time during local training without reducing the learning accuracy, thus improving the overall efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.