Abstract
The method of intersection spaces associates rational Poincar\'e complexes to singular stratified spaces. For a conifold transition, the resulting cohomology theory yields the correct count of all present massless 3-branes in type IIB string theory, while intersection cohomology yields the correct count of massless 2-branes in type IIA theory. For complex projective hypersurfaces with an isolated singularity, we show that the cohomology of intersection spaces is the hypercohomology of a perverse sheaf, the intersection space complex, on the hypersurface. Moreover, the intersection space complex underlies a mixed Hodge module, so its hypercohomology groups carry canonical mixed Hodge structures. For a large class of singularities, e.g., weighted homogeneous ones, global Poincar\'e duality is induced by a more refined Verdier self-duality isomorphism for this perverse sheaf. For such singularities, we prove furthermore that the pushforward of the constant sheaf of a nearby smooth deformation under the specialization map to the singular space splits off the intersection space complex as a direct summand. The complementary summand is the contribution of the singularity. Thus, we obtain for such hypersurfaces a mirror statement of the Beilinson-Bernstein-Deligne decomposition of the pushforward of the constant sheaf under an algebraic resolution map into the intersection sheaf plus contributions from the singularities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.