Abstract

Let [Formula: see text] be a field and [Formula: see text] the general linear group of degree [Formula: see text] over [Formula: see text]. The intersection graph [Formula: see text] of [Formula: see text] is a simple undirected graph whose vertex set includes all nontrivial proper subgroups of [Formula: see text]. Two vertices [Formula: see text] and [Formula: see text] of [Formula: see text] are adjacent if [Formula: see text] and [Formula: see text]. In this paper, we show that if [Formula: see text] is a finite field containing at least three elements, then the diameter [Formula: see text] is [Formula: see text] or [Formula: see text]. We also classify [Formula: see text] according to [Formula: see text]. In case [Formula: see text] is infinite, we prove that [Formula: see text] is one-ended of diameter [Formula: see text] and its unique end is thick.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.