Abstract
AbstractBalas introduced intersection cuts for mixed integer linear sets. Intersection cuts are given by closed form formulas and form an important class of cuts for solving mixed integer linear programs. In this paper we introduce an extension of intersection cuts to mixed integer conic quadratic sets. We identify the formula for the conic quadratic intersection cut by formulating a system of polynomial equations with additional variables that are satisfied by points on a certain piece of the boundary defined by the intersection cut. Using a software package from algebraic geometry we then eliminate variables from the system and get a formula for the intersection cut in dimension three. This formula is finally generalized and proved for any dimension. The intersection cut we present generalizes a conic quadratic cut introduced by Modaresi, Kilinc and Vielma.KeywordsMixed IntegerMixed Integer Linear ProgramValid InequalityMixed Integer LinearClose Form FormulaThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.