Abstract

We extend the conductance and canonical paths methods to the setting of general finite Markov chains, including non-reversible non-lazy walks. The new path method is used to show that a known bound for the mixing time of a lazy walk on a Cayley graph with a symmetric generating set also applies to the non-lazy non-symmetric case, often even when there is no holding probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.