Abstract

By considering a (not necessarily locally-flat) PL knot as the singular locus of a PL stratified pseudomanifold, we can use intersection homology theory to define intersection Alexander polynomials, a generalization of the classical Alexander polynomial invariants for smooth or PL locally-flat knots. We show that the intersection Alexander polynomials satisfy certain duality and normalization conditions analogous to those of ordinary Alexander polynomials, and we explore the relationships between the intersection Alexander polynomials and certain generalizations of the classical Alexander polynomials that are defined for non-locally-flat knots. We also investigate the relations between the intersection Alexander polynomials of a knot and the intersection and classical Alexander polynomials of the link knots around the singular strata. To facilitate some of these investigations, we introduce spectral sequences for the computation of the intersection homology of certain stratified bundles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.