Abstract

A clutter is intersecting if the members do not have a common element yet every two members intersect. It has been conjectured that for clutters without an intersecting minor, total primal integrality and total dual integrality of the corresponding set covering linear system must be equivalent. In this paper, we provide a polynomial characterization of clutters without an intersecting minor. One important class of intersecting clutters comes from projective planes, namely the deltas, while another comes from graphs, namely the blockers of extended odd holes. Using similar techniques, we provide a polynomial algorithm for finding a delta or the blocker of an extended odd hole minor in a given clutter. This result is quite surprising as the same problem is NP-hard if the input were the blocker instead of the clutter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.