Abstract
An extension of the Artin Braid Group is considered, with the introduction of new operatores that generate double and triple intersections. The extended Alexander theorem, relating intersecting closed braids and intersecting knots is proved for double and triple intersections, and a counter example is given for the case of quadruple intersections. Intersecting knot invariants are also constructed via Markov traces defined on the intersecting braid algebra representations, and the extended Turaev representation is discussed as an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.