Abstract
AbstractErdős and Lovász noticed that an ‐uniform intersecting hypergraph with maximal covering number, that is, , must have at least edges. There has been no improvement on this lower bound for 45 years. We try to understand the reason by studying some small cases to see whether the truth lies very close to this simple bound. Let denote the minimum number of edges in an intersecting ‐uniform hypergraph. It was known that and . We obtain the following new results: The extremal example for uniformity 4 is unique. Somewhat surprisingly it is not symmetric by any means. For uniformity 5, , and we found three examples, none of them being some known graph. We use both theoretical arguments and computer searches. In the footsteps of Erdős and Lovász, we also consider the special case, when the hypergraph is part of a finite projective plane. We determine the exact answer for . For uniformity 6, there is a unique extremal example. In a related question, we try to find 2‐intersecting r‐uniform hypergraphs with maximal covering number, that is, . An infinite family of examples is to take all possible r‐sets of a ‐vertex set. There is also a geometric candidate: biplanes. These are symmetric 2‐designs with . We determined that only three biplanes of the 18 known examples are extremal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.