Abstract

Huntingon's disease is a progressive neurodegenerative disease arising from expansion of a polyglutamine (polyQ) tract in the protein huntingtin (Htt) resulting in aggregation of mutant Htt into nuclear and/or cytosolic inclusions in neurons. Mutant Htt affects multiple processes including protein degradation, transcription, signal transduction, fast axonal transport and endocytosis [reviewed in Ross, C.A. and Poirier, M.A. (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell. Biol., 6, 891-898]. Here, we report that the endocytic and signal transduction scaffold intersectin (ITSN) increased aggregate formation by mutant Htt through activation of the c-Jun-NH(2)-terminal kinase (JNK)-MAPK pathway. Conversely, silencing ITSN or inhibiting JNK attenuated aggregate formation. Using a Drosophila model for polyQ repeat disease, we observed that ITSN enhanced polyQ-mediated neurotoxicity. A reciprocal relationship was observed between ITSN and Htt. While ITSN enhanced Htt aggregation and toxicity, Htt, in turn, inhibited the cooperativity between ITSN and the epidermal growth factor receptor signal transduction pathway. Finally, we observed that ITSN overexpression enhanced aggregation of polyQ-expanded androgen receptor (AR) as well as wild-type versions of both Htt and AR suggesting a broader involvement of ITSN in neurodegenerative diseases through destabilization of polyQ-containing proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.