Abstract
The stability of the converter-grid interconnection can be studied by analyzing the product of the converter output admittance and the grid impedance. For reliable stability analysis, it has been of interest to obtain accurate converter output admittance models for a wide range of frequencies, ideally also around and above the Nyquist frequency of the converter system. This article presents a modeling method for the output admittance of power converters defined in the Laplace domain that takes into account the discrete nature of the control system. The modeling method is based on analyzing the intersample behavior of sampled-data systems, a class of systems that includes the modern digitally controlled power converters. The proposed method is compared to conventional admittance modeling methods, and its accuracy is validated by means of simulations and experiments.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.