Abstract

Chronic social stress has been associated with increased caloric intake and adiposity. These effects have been linked to stress induced changes in the secretion of ghrelin, a hormone that targets a number of brain regions to increase food intake and energy expenditure and promote increased body fat content. One of the brain sites targeted by ghrelin is the hypothalamic paraventricular nucleus (PVN), a region critical for both the regulation of the stress response and the regulation of energy balance. Given these data, we examined the contribution of ghrelin receptors in the PVN to the metabolic and behavioral changes that are seen during chronic social stress in mice. To do this, mice were implanted with cannulae attached to osmotic minipumps and delivering either vehicle or the ghrelin receptor (growth hormone secretagogue receptor) antagonist [D-Lys-3]-GHRP-6 (20 nmol/day/mouse). Following a week of recovery, half of the animals in each group were exposed to chronic social defeat stress for a period of 3 weeks whereas the other half were left undisturbed. During this time, all animals were given ad libitum access to standard laboratory chow and presented a high-fat diet for 4 h during the day. Results showed that the ghrelin receptor antagonism did not decrease stressed induced caloric intake, but paradoxically increased the intake of the high fat diet. This would suggest that ghrelin acts on the PVN to promote the intake of carbohydrate rich diets while decreasing fat intake and blockade of ghrelin receptors in the PVN leads to more consumption of foods that are high in fat.

Highlights

  • In mammals, environmental stressors result in the activation of a number of homeostatic and allostatic physiological mechanisms that enable the organism to deal with the impending threat (McEwen, 2007)

  • CRH acts on corticotropes to elicit the secretion of adrenal corticotropin releasing hormone (ACTH) into the blood stream (Smith and Vale, 2006)

  • HISTOLOGY Postmortem analyses of cannulae placements showed that six mice had misplaced cannulae (Vehicle non-stressed miss, n = 1; Vehicle stressed miss, n = 1; [D-Lys-3]-GHRP-6 non-stressed miss, n = 2; [D-Lys-3]-GHRP-6 stressed miss, n = 2)

Read more

Summary

Introduction

Environmental stressors result in the activation of a number of homeostatic and allostatic physiological mechanisms that enable the organism to deal with the impending threat (McEwen, 2007). One of these mechanisms involves the activation of the hypothalamic pituitary adrenal (HPA) axis, a major neuroendocrine system that controls the response to stress. CRH acts on corticotropes to elicit the secretion of adrenal corticotropin releasing hormone (ACTH) into the blood stream (Smith and Vale, 2006). Increased circulating levels of ACTH stimulate cells in the adrenal cortex to release glucocorticoids (Stratakis and Chrousos, 1995; Smith and Vale, 2006). Glucocorticoids provide a negative feedback signal to the hypothalamus and hippocampus to terminate any further activation of the HPA axis (McEwen, 2007)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call