Abstract

Sustained expression of recombinant proteins is a critical factor for the effectiveness of numerous applications in the biomedical sciences including the treatment of human disease by gene therapy, the large scale production of therapeutic proteins, as well as the investigation of gene function by transgenesis or cell type specific mutagenesis. Although much attention has been paid to the optimisation of regulatory sequences such as promoters, untranslated regions and polyadenylation signals, effective and sustained expression of recombinant genes in vivo is often difficult to achieve. Here we report that the creation of artificial exons, by insertion of two short heterologous introns into open reading frames, is not only compatible with functional expression, but also leads to a 30-fold enhancement of mRNA production for both green fluorescent protein and the bacteriophage P1-derived Cre recombinase. The levels of green fluorescence were increased five-fold in cell lines and sustained long-term expression at increased levels was observed in rat brain after transduction with a herpes simplex virus-based vector. The data presented identify a means by which the expression of recombinant genes can be enhanced considerably, in addition to and independently from the surrounding regulatory sequences. The method should help obtain sustained and effective expression of recombinant proteins in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.