Abstract

The method used to deduce the spectral density distribution of intermolecular and intramolecular (vibrational) degrees of freedom in the liquid state from optical heterodyne detected optical (Raman-induced) Kerr effect (OHD-RIKE) measurements is reexamined within a multimode Brownian oscillator model. The ramifications of nonlinear coupling of the nuclear degrees of freedom to the medium polarizability are explored for discrimination between “homogeneous” and “inhomogeneous” contributions to the vibrational spectral density. Under physically reasonable assumptions, an estimation of the homogeneous contribution to the vibrational line shape can be made from the OHD-RIKE observable (if nonlinear coupling is nonnegligible). The model is developed generally, and calculations are applied specifically to temperature-dependent OHD-RIKE measurements of liquid water. The results indicate that the line broadening in the low-frequency vibrational distribution due to the hydrogen-bonded network structure of liquid wa...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.