Abstract
Increasing evidence shows that the influence of microbiota on biogeochemical cycling, plant development, and human health is executed through a complex network of microbe-microbe interactions. However, characterizing how microbes interact and work together within closely packed and highly heterogeneous microbial ecosystems is extremely challenging. Here, we describe a rule-of-thumb framework for visualizing polymicrobial interactions and extracting general principles that underlie microbial communities. We integrate elements of metabolic ecology, behavioral ecology, and game theory to quantify the interactive strategies by which microbes at any taxonomic level compete for resources and cooperate symbiotically with each other to form and stabilize ecological communities. We show how the framework can chart an omnidirectional landscape of microbial cooperation and competition that may drive various natural processes. This framework can be implemented into genome-wide association studies to unravel the genetic mechanisms underlying microbial interaction networks and their evolutionary consequences along spatiotemporal gradients.IMPORTANCE Identifying general biological rules that underlie the complexity and heterogeneity of microbial communities has proven to be highly challenging. We present a rule-of-thumb framework for studying and characterizing how microbes interact with each other across different taxa to determine community behavior and dynamics. This framework is computationally simple but conceptually meaningful, and it can provide a starting point to generate novel biological hypotheses about microbial interactions and explore internal workings of microbial community assembly in depth.
Highlights
Increasing evidence shows that the influence of microbiota on biogeochemical cycling, plant development, and human health is executed through a complex network of microbe-microbe interactions
By integrating elements of metabolic ecology, behavioral ecology, and game theory, we proposed a rule-of-thumb framework for detecting, testing, and cataloguing microbial interactions
This network game model enables the reconstruction of microbial networks at any dimension for microbial community assembly with any density and heterogeneity
Summary
Increasing evidence shows that the influence of microbiota on biogeochemical cycling, plant development, and human health is executed through a complex network of microbe-microbe interactions. We describe a rule-of-thumb framework for visualizing polymicrobial interactions and extracting general principles that underlie microbial communities. We integrate elements of metabolic ecology, behavioral ecology, and game theory to quantify the interactive strategies by which microbes at any taxonomic level compete for resources and cooperate symbiotically with each other to form and stabilize ecological communities. We show how the framework can chart an omnidirectional landscape of microbial cooperation and competition that may drive various natural processes. This framework can be implemented into genome-wide association studies to unravel the genetic mechanisms underlying microbial interaction networks and their evolutionary consequences along spatiotemporal gradients
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.