Abstract

The interrogation of a Fabry-Perot cavity through a dual wavelength Raman fiber laser is reported. The proposed sensing system is based on the use of a dual wavelength Raman fiber laser to generate two quadrature phase-shifted signals that allow the recovery of the temperature change sensed by the Fabry-Perot interferometric cavity. The dual wavelength Raman fiber laser is based on fiber Bragg gratings combined with a distributed mirror. The Fabry-Perot cavity is fabricated by splicing a short length of a suspended-core microstructured fiber to a single mode fiber. The use of this sensing system allows a passive and accurate interrogation of the temperature, while taking advantage of the Rayleigh scattering growth as a distributed mirror in the laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.