Abstract
AbstractBoron‐doped diamond (BDD) electrodes are widely used in electrochemical sensing and water purification owing to their chemical and structural stability under harsh reaction conditions. Water oxidation at BDD electrodes is known to produce reactive oxygen species, but the discharged and surface chemistries involved in these processes have not been studied in depth. Here, we present scanning electrochemical microscopy (SECM) studies of electrogenerated intermediates and products formed on sp2 carbon‐containing BDD electrodes that display stark differences in their reactivity as a function of electrolyte type and pH during water oxidation. The most reactive and abundant species discharged from the electrode were observed at pH 11 in sulfate electrolyte. With the surface interrogation mode of SECM, two kinetically distinct surface intermediates were clearly distinguished, with one forming two orders of magnitude faster than the other but displaying a slower desorption rate. The surface coverage of these species was estimated in the range of 4–7×10−5 mol/cm2 for the first, and 3–4.4×10−5 mol/cm2 for the second one. SECM imaging suggested that regions of increased product evolution have decreased electron transfer kinetics and limited surface sites for intermediate binding. This work establishes methods for studying highly reactive intermediates found in BDD and paves the way for the inspection of other interfaces where solvolysis impacts their reactivity and evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.