Abstract

Numerous commercial products either exist as concentrated suspensions of small particles or involve the processing of concentrated suspensions during some stage of their manufacture. Examples include foods, adhesives and glues, ceramic dispersions, paints, and polymer dispersions such as polyvinyl chloride plastisols. As a result, it is important for engineers to understand the flow behavior of these systems and how the flow behavior affects the way these materials can be processed.For mahy years, progress in understanding the flow behavior of concentrated suspensions was slow compared to progress on dilute systems, partly because of how the study of suspensions evolved. Building on Einstein's classical work for dilute suspensions of rigid spheres, many authors attempted to modify his equations to predict the flow behavior of more concentrated suspensions, but the extension of Einstein's work met with limited success, because nonhydrodynamic interactions cari be just as important as the hydrodynamic interactions considered by Einstein, and multiple particle interactions quickly complicate the problem as the particle concentration increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call