Abstract

The study of interrelationships among soil health indicators is important for (i) achieving better understanding of nutrient cycling, (ii) making soil health assessment cost-effective by eliminating redundant indicators, and (iii) improving nitrogen (N) fertilizer recommendation models. The objectives of this study were to (i) decipher complex interrelationships of selected chemical, physical, and biological soil health indicators in pastures with history of inorganic or broiler litter fertilization, and (ii) establish associations among inorganic N, potentially mineralizable N (PMN), and soil microbial biomass (SMBC), and other soil health indicators. In situ soil respiration was measured and soil samples were collected from six beef farms in 2017 and 2018 to measure selected soil health indicators. We were able to establish associations between easy-to-measure active carbon (POXC) vs. PMN (R2 = 0.52), and N (R2 = 0.43). POXC had a noteworthy quadratic relationship with N and nitrate, where we found dramatic increase of N and nitrate beyond an inflection point of 500 mg kg−1 POXC. This point may serve as threshold for soil health assessment. The relationships of loss-on-ignition (LOI) carbon with other soil health indicators were discernable between inorganic- and broiler litter-fertilized pastures. We were able to establish association of SMBC with other soil variables (R2 = 0.76) and there was detectable difference in SMBC between inorganic-fertilized and broiler litter-fertilized pastures. These results could be useful for cost-effective soil health assessment and optimization of N fertilizer recommendation models to improve N use efficiency and grazing system sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.