Abstract

Calcium sulfates are known to be potential reservoirs of organic compounds and have been detected on Mars. However, not all data that indicate the presence of sulfates collected by the Mars Exploration Rovers (Spirit and Opportunity) and Curiosity rover can be explained by the different calcium sulfate polymorphs, and therefore, mixtures of calcium sulfates with other single sulfates must be considered. In addition, the presence of mixed calcium sulfates supports the data and indicates that the molar ratio of sulfate/calcium is >1. To obtain adequate spectroscopic information of mixed-cation sulfates to be used in the interpretation of data from Mars in the next few years, the thermodynamically stable syngenite (K2Ca(SO4)2·H2O) and görgeyite (K2Ca5(SO4)6·H2O) mixed-cation sulfates have been studied along with the interrelationships in the gypsum-syngenite-görgeyite system to understand their possible formation on Mars. Raman spectroscopy and Visible-Near Infrared-Shortwave Infrared (VisNIR) spectroscopy have been used for their characterization to increase the databases for the two future Mars exploration missions, Mars2020 and ExoMars2022, where both techniques will be implemented. These VisNIR data can also help with the interpretation of spectral data of salt deposits on Mars acquired by the OMEGA and CRISM spectrometers onboard the Mars Express and Mars Reconnaissance orbiters. This work demonstrates that syngenite (K2Ca(SO4)2·H2O) easily precipitates without the need for hydrothermal conditions, which, depending on the ion concentrations, may precipitate in different proportions with gypsum. Furthermore, in this study, we also demonstrate that, under hydrothermal conditions, görgeyite (K2Ca5(SO4)6·H2O) would also be highly likely to form and may also be identified on Mars together with syngenite and gypsum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.