Abstract

5-Fluoromethylornithine (5-FMOrn) is a specific inactivator of l-ornithine:2-oxoacid aminotransferase (OAT). However, a certain proportion of the OAT activity in mouse brain, liver and kidney is not inactivated by this compound. In the present work, the occurrence, distribution and subcellular localization of this 5-FMOrn-resistant OAT is reported. It was shown that the 5-FMOrn-resistant brain enzyme is kinetically different from the corresponding liver enzyme, and it also differs from the 5-FMOrn-sensitive OAT. The most conspicuous difference between the 5-FMOrn-resistant OAT of liver and brain is the sensitivity of the latter against excessive concentrations of its substrate 2-oxoglutarate. 5-FMOrn and GABA are reversible inhibitors of the 5-FMOrn-resistant enzyme. Both compounds compete with Orn for the enzymes active site. A number of known inactivators of GABA-T which are at the same time inactivators of OAT, and canaline, a natural inhibitor of OAT, inactivate both the 5-FMOrn-sensitive and the 5-FMOrn-resistant enzyme. Gabaculine is the most potent inhibitor of the 5-FMOrn-resistant enzyme that is presently known. Our results are compatible with the suggestion that the 5-FMOrn-resistant OAT is an isoenzyme. From the fact that this form of OAT prevails in the brain, and its occurrence in the nerve ending fraction of brain homogenates supports the view that 5-FMOrn-resistant OAT may be involved in the intraneuronal generation of neurotransmitter glutamate and/or GABA from Orn as precursor. Further support in favour of this notion are previous findings which suggest feedback inhibition of OAT by GABA in GABAergic nerve endings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call