Abstract

This study aimed to investigate if the titanium samples with low hydrogen permeation which treated with a novel etching combination: phosphoric acid and sodium fluoride could influence the surface physiochemical properties and early adsorption ability. Titanium samples were treated with three different concentrations of the new formula, as groups A, B and C, and treated with the traditional etching formula, as group T. Zeta potential, contact angle, X-ray photoelectron spectroscopy (XPS) and fibronectin (FN)/vitronectin (VN) adsorption of Sprague-Dawley (SD) rat tibial osteotomies in the initial 30min and MG-63 adsorption in the initial 24 h were detected. Basing on the results of trails and pearson correlation analysis, the low hydrogen permeation into titanium didn't exert an impact on the surface morphology and surface stability. The adsorptions of F, P, S, acid hydroxyl and basic hydroxyl on the surfaces brought no bear on them as well. Surface concave depth and surface skewness showed highly positive correlation and moderate negative correlation with adsorption ability, respectively. Therefore, the surface morphology of titanium treated with the novel etching formula plays the only and primary role on the early adsorption. Because of its specific surface topography, group C showed the best performance which possessed slightly superiority than those of group B and group T, and with the lowest being group A. The low hydrogen permeation into titanium substrate was just benefit for improving the titanium mechanical properties, but not for the surface biochemical traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call