Abstract

This paper presents a review of ideas that interconnect astrochemistry and galactic dynamics. Since these two areas are vast and not recent, each one has already been covered separately by several reviews. After a general historical introduction, and a needed quick review of processes such as stellar nucleosynthesis that gives the base to understand the interstellar formation of simple chemical compounds (e.g., H2, CO, NH3, and H2O), we focus on a number of topics that are at the crossing of the two big areas, dynamics and astrochemistry. Astrochemistry is a flourishing field that intends to study the presence and formation of molecules as well as the influence of them on the structure, evolution, and dynamics of astronomical objects. The progress in the knowledge on the existence of new complex molecules and of their process of formation originates from the observational, experimental, and theoretical areas that compose the field. The interfacing areas include star formation, protoplanetary disks, the role of the spiral arms, and the chemical abundance gradients in the galactic disk. It often happens that the physical conditions in some regions of the interstellar medium are only revealed by means of molecular observations. To organize a rough classification of chemical evolution processes, we discuss about how astrochemistry can act in three different contexts, namely, the chemistry of the early universe, including external galaxies, star-forming regions, and asymptotic giant branch (AGB) stars and circumstellar envelopes. We mention that our research is stimulated by plans for instruments and projects, such as the ongoing Large Latin American Millimeter Array (LLAMA), which consists in the construction of a 12 m sub-mm radio telescope in the Andes. Thus, modern and new facilities can play a key role in new discoveries not only in astrochemistry but also in radio astronomy and related areas. Furthermore, the research on the origin of life is also a stimulating perspective.

Highlights

  • 1.1 Early Impressions on the Milky WayOne of the most fundamental questions of mankind is why there is something rather than nothing (Stavinschi, 2011; Allen and Lidström, 2017); from archaic times, cultures have been intrigued and inspired by the galaxy—in classical Latin via lactea1—the hazy band that can be visible across a cloudless and unpolluted night sky (Figure 1)

  • We know that hydrogen and helium are the lightest and most abundant elements in the universe; they burn in stars forming heavier elements through nuclear reactions

  • The flat gradient of metallicity in the outer part of the galactic disk can be understood as an effect of the gas flow in spiral arms, remembering that stars can only be born in arms

Read more

Summary

Early Impressions on the Milky Way

One of the most fundamental questions of mankind is why there is something rather than nothing (Stavinschi, 2011; Allen and Lidström, 2017); from archaic times, cultures have been intrigued and inspired by the galaxy—in classical Latin via lactea1—the hazy band that can be visible across a cloudless and unpolluted night sky (Figure 1). Arts and sciences have portrayed the origin and meaning of the galaxy; today, we know that it is the Milky Way seen from inside (Figure 2A); the spiral arm where the Solar System is located is the so-called Orion Arm or Orion Spur (Bok, 1950a; Bok, 1950b). “Galaxy” and “atom” are examples of words with Greek etymological roots They are broadly used in contemporary science, but their meanings evolve with time. Galaxy alludes to the liquid milk, the essential food for young mammals In retrospect, such association is not minor if one considers Charles Darwin’s legacy (e.g., Darwin, 1859), since the physiological synthesis of milk and lactation period are aspects that continuously drive the mammals’ evolution, whose origins date back 200 million years (Capuco and Akers, 2009; Morgan, 2016). It was not well known how to transform inorganic substances into organic compounds, so that the production of urea from an aqueous solution of ammonium cyanate, without requiring a “vital force,” set a milestone for chemical synthesis, so that not all the carbon compounds derived from living organisms (Forster and Church, 2006; Sumiya and Maeda, 2019)

The Organic Side of the Galaxy
ASTROCHEMISTRY AND GALACTIC DYNAMICS
APPROACHES AND METHODOLOGIES
Molecules in Space
Experimental Astrochemistry
Calculations and Modeling in Astrochemistry
THE OBJECTS OF STUDY: A LARGE AND SPECIAL ISSUE
Chemistry of the Early Universe
Astrochemistry in Star-Forming Regions
Evolved Stars and Circumstellar Envelopes
Findings
FINAL REMARKS AND PERSPECTIVES
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.