Abstract

The interrelation of glucocorticoids and 1,25 dihydroxycholecalciferol (1,25(OH)2D3) on intestinal calcium and phosphate absorption was investigated. The active and passive transport of calcium and phosphate was evaluated by the in situ intestinal loop technique. Administration of cortisone resulted in a decrease of the luminal fluid and an increase of the luminal calcium and phosphate concentration. Under active transport conditions, administration of cortisone resulted in a decrease of net calcium absorption through two mechanisms: (1) depressed vitamin D-dependent calcium absorption, (2) increased vitamin D-independent calcium backflux. The enhancement of bidirectional phosphate flux by cortisone was independent of 1,25(OH)2D3. An enhancement of water movement by cortisone resulted in an increase of luminal calcium and phosphate concentration which favors the passive diffusion of these ions. Enhanced calcium diffusion by cortisone compensates for the inhibitory effect of cortisone on vitamin D-dependent calcium transport. However, enhanced phosphate diffusion by cortisone is additive to the effect of 1,25(OH)2D3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.