Abstract
In foods, the Maillard reaction (MR) and lipid oxidation lead to the formation of several molecules through interrelated chemical pathways. MR and lipid oxidation products were investigated in model oil-in-water emulsions consisting of canola oil, water, and Tween 20, a nonionic surfactant, with glucose and phenylalanine. The presence of 1% Tween 20, either in emulsion or as a control surfactant solution, sped up the formation of N-(1-deoxy-d-fructos-1-yl)-phenylalanine and of phenylacetaldehyde. Overall, the formation of MR products was up to sixteen times higher in emulsions than in an aqueous system without a surfactant. The formation of conjugated dienes, total aldehydes, hexanal, and (Z)-2-octenal was reduced down to six times when MR products were present in the emulsion. These results confirm that the formation of MR intermediates is influenced by the reactants' location, and the presence of a discrete nonpolar environment (oil droplets or surfactant micelles) promotes MR volatile formation through Strecker degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.