Abstract

In Aspergillus nidulans homocysteine can be metabolized both to cysteine and methionine. Mutants impaired in the main pathway of cysteine synthesis or in the sulphate assimilation pathway show a low pool of glutathione and elevated levels of homocysteine synthase and of the homocysteine-to-cysteine pathway enzymes. On the other hand, the level of methionine synthase and other enzymes of folate metabolism is depressed in these mutants. This anticoordinated regulation provides a mechanism controlling the partition of homocysteine between the two diverging pathways. Homocysteine synthase was found derepressed, along with folate enzymes, in a strain carrying a mutation which suppresses mutations in metA, metB and metG genes. These results indicate that homocysteine synthase can be regarded as the enzyme of an alternative pathway of methionine synthesis and strongly suggest that the regulatory mechanisms governing sulphur-containing amino acid and folate metabolisms are interrelated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call