Abstract

The effects of insulin and glucose, alone and combined, on diacylglycerol (DAG), protein kinase-C (PKC), and glucose transport were compared in rat adipocytes and solei incubated in medium containing 0-20 mM glucose. In both tissues insulin rapidly stimulated [3H]DAG production from [3H]glycerol; extracellular glucose masked this effect in adipocytes, but not in solei. [3H]Glucose was avidly converted to DAG in adipocytes, and this conversion was enhanced by insulin. In contrast, [3H]glucose was poorly converted to DAG in solei. Glucose alone (5-20 mM) stimulated PKC translocation in adipocytes, but not in solei. Insulin stimulated PKC translocation in both tissues at all glucose concentrations. However, glucose modulated this effect of insulin in adipocytes by 1) decreasing cytosolic PKC and the absolute amount of PKC translocated, and 2) promoting apparent turnover of membrane PKC. In contrast, in solei, glucose did not affect PKC levels or translocation responses to insulin. In keeping with DAG-PKC signalling, the relative glucose transport effects of insulin were influenced by extracellular glucose in adipocytes, but not in solei. These results suggest that 1) glucose-induced PKC translocation requires metabolism of glucose to DAG; 2) glucose activates DAG-PKC signalling in adipocytes, but not in solei; 3) insulin activates DAG-PKC signalling in both tissues at all glucose levels; and 4) glucose may modulate the effects of insulin on DAG-PKC signalling in adipocytes, but not in solei. Consistent with in vitro results, in solei taken directly from diabetic rats, membrane PKC was decreased, and cytosolic PKC was increased, presumably reflecting diminished PKC translocation due to hypoinsulinemia. In contrast, in adipose tissue, cytosolic PKC was decreased, presumably reflecting hyperglycemia-induced PKC translocation. Accordingly, DAG levels were increased in adipose tissue, but not in solei, in diabetic rats, and insulin increased DAG in both tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.