Abstract

Water and energy are essential resources that flow between different regions in economic activities, forming a complex network that profoundly impacts sustainable development. Revealing network structural resilience allows for the identification of weak links, thus enhancing the capacity for sustainable development. This study employs a resilience-based method to examine changes in virtual water-energy transfers, combining input–output tables and total resource consumption coefficients (TRCC) to investigate the structural resilience of the virtual water-energy network. Case studies were conducted in the Yangtze River Economic Belt (YEB) in 2012 and 2017. The results show that the virtual water flow rate decreased by 28.66%, while that of virtual energy increased by 4.88% in YEB. The virtual energy network’s structural resilience is better than that of the virtual water network and shows significant improvement in later periods. The virtual water network structure has a clear hierarchical structure, while the virtual energy network structure is relatively flat. The transmission and connectivity of the two networks do not differ significantly, but the virtual energy network’s transmission is superior to that of the virtual water network. There is a significant improvement in the virtual energy network’s agglomeration in the later stages, while there is no significant change in the virtual water contact network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call