Abstract

Images of the solar corona obtained by the Solar-Terrestrial Relations Observatory (STEREO) provide high-cadence, high-resolution observations of a compression wave forming ahead of a fast (940 km s{sup -1}) coronal mass ejection (CME) that erupted at {approx}9:00 UT on 2010 April 03. The passage of this wave at 1 AU is detected in situ by the Advanced Composition Explorer and Wind spacecraft at 08:00 UT on April 05 as a shock followed by a turbulent and heated sheath. These unprecedented and complementary observations of a shock-sheath region from the Sun to 1 AU are used to investigate the onset of a Solar Energetic Particle (SEP) event measured at the first Lagrange point (L1) and at STEREO-Behind (STB). The spatial extent, radial coordinates, and speed of the ejection are measured from STEREO observations and used as inputs to a numerical simulation of the CME propagation in the background solar wind. The simulated magnetic and plasma properties of the shock and sheath region at L1 agree very well with the in situ measurements. These simulation results reveal that L1 and STB are magnetically connected to the western and eastern edges of the driven shock, respectively. They also show that the 12 hrmore » delay between the eruption time of the ejection and the SEP onset at L1 corresponds to the time required for the bow shock to reach the magnetic field lines connected with L1. The simulated shock compression ratio increases along these magnetic field lines until the maximum flux of high-energy particles is observed.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call