Abstract

Biochar has received considerable attention as an eco-friendly bio-sorbent; however, multifarious characteristics caused by pyrolysis and feedstock pose difficulties in its application. We characterized the pH-dependent sorption of the pesticide simazine on Miscanthus biochar produced at two pyrolysis temperatures (400 and 700 °C; hereafter B-400 and B-700). The specific surface-area (SSA) of the micro- and nanopores, elemental composition, surface acidity and infrared spectra were determined. The SSA was greater in B-700 than in B-400, and the former had greater SSA in micro-pores and lower SSA in nanopores than the latter. During pyrolysis, the single-bond structures of the feedstock were converted to aromatic structures, and further pyrolysis led to ligneous structures. Alterations in pore structure and concave-up Scatchard plot corroborated the presence of two sorption mechanisms: electrostatic attractions (Ses) and hydrophobic attractions (Shp). Decreases in maximum sorption in the qmax-L with increasing pH was due to decreased Ses via deprotonation of carboxylic groups on biochar, while those in the qmax-H with increasing pyrolysis temperature were due to decreased Shp, resulting from pore structure deformation. We believe that our approach, which addresses the pH-dependence of charge density of sorbate and sorbent, could contribute to a better understanding of the behavior of simazine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.