Abstract
Methods that can provide adequate accuracy in the estimation of variables from incomplete information are desirable for the prediction of fermentation processes. A feed-forward back-propagation artificial neural network was used for modelling of thick juice fermentation. Fermentation time and starting sugar content were usedas input variables, i.e. nodes. Neural network had one output node (ethanol content, yeast cell number or sugar content). The hidden layer had nine neurons. Garson's algorithm and connection weights were used for interpreting neural network. The inadequacy of Garson's algorithm can be seen by comparing with the results of regression analysis, which indicates that the influence of the fermentation time is higher. A better agreement of the results was obtained using network connection weights, a method that can be used to determine the relative importance of input variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.