Abstract

The High Precision Charger at Dalhousie University can be used to accurately measure the Coulombic Efficiency (CE) and the charge and discharge capacity endpoint slippages per cycle (Δd and Δc, respectively) of Li-ion full cells and Li/electrode half cells. If the CE is not exactly 1.0000 and the endpoints slip then this must be due to parasitic reactions between the electrode materials and the electrolyte in the cell. The various parasitic currents and charges associated with: solid electrolyte interface growth; electrolyte oxidation; transition metal dissolution and positive electrode damage are considered using a Li inventory model. The mathematical relations between the parasitic currents and the measured CE, Δd and Δc are derived. Example data collected on both Li/graphite, Li/LiCoO2 half cells as well as both graphite/LiCoO2 and graphite/LiMn2O4 Li-ion cells are used to illustrate how high precision coulometry results can be used to help elucidate cell degradation mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.