Abstract

In the pathogenesis of COVID-19, impairment of respiratory functions is often one of the key symptoms. Studies show that in these cases, voice production is also adversely affected - vocal fold oscillations are asynchronous, asymmetrical and more restricted during phonation. This paper proposes a method that analyzes the differential dynamics of the glottal flow waveform (GFW) during voice production to identify features in them that are most significant for the detection of COVID-19 from voice. Since it is hard to measure this directly in COVID-19 patients, we infer it from recorded speech signals and compare it to the GFW computed from physical model of phonation. For normal voices, the difference between the two should be minimal, since physical models are constructed to explain phonation under assumptions of normalcy. Greater differences implicate anomalies in the bio-physical factors that contribute to the correctness of the physical model, revealing their significance indirectly. Our proposed method uses a CNN-based 2-step attention model that locates anomalies in time-feature space in the difference of the two GFWs, allowing us to infer their potential as discriminative features for classification. The viability of this method is demonstrated using a clinically curated dataset of COVID-19 positive and negative subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.