Abstract

There have been significant efforts to understand, describe, and predict the social commerce intention of users in the areas of social commerce and web data management. Based on recent developments in knowledge graph and inductive logic programming in artificial intelligence, in this paper, we propose a knowledge-graph-based social commerce intention analysis method. In particular, a knowledge base is constructed to represent the social commerce environment by integrating information related to social relationships, social commerce factors, and domain background knowledge. In this study, knowledge graphs are used to represent and visualize the entities and relationships related to social commerce, while inductive logic programming techniques are used to discover implicit information that can be used to interpret the information behaviors and intentions of the users. Evaluation tests confirmed the effectiveness of the proposed method. In addition, the feasibility of using knowledge graphs and knowledge-based data mining techniques in the social commerce environment is also confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.