Abstract
The purpose of this study was to compare diagnostic accuracy and interpretation time of screening automated breast ultrasound (ABUS) for women with dense breast tissue without and with use of a recently U.S. Food and Drug Administration-approved computer-aided detection (CAD) system for concurrent read. In a retrospective observer performance study, 18 radiologists interpreted a cancer-enriched set (i.e., cancer prevalence higher than in the original screening cohort) of 185 screening ABUS studies (52 with and 133 without breast cancer). These studies were from a large cohort of ABUS-screened patients interpreted as BI-RADS density C or D. Each reader interpreted each case twice in a counterbalanced study, once without the CAD system and once with it, separated by 4 weeks. For each case, each reader identified abnormal findings and reported BI-RADS assessment category and level of suspicion for breast cancer. Interpretation time was recorded. Level of suspicion data were compared to evaluate diagnostic accuracy by means of the Dorfman-Berbaum-Metz method of jackknife with ANOVA ROC analysis. Interpretation times were compared by ANOVA. The ROC AUC was 0.848 with the CAD system, compared with 0.828 without it, for a difference of 0.020 (95% CI, -0.011 to 0.051) and was statistically noninferior to the AUC without the CAD system with respect to a margin of -0.05 (p = 0.000086). The mean interpretation time was 3 minutes 33 seconds per case without the CAD system and 2 minutes 24 seconds with it, for a difference of 1 minute 9 seconds saved (95% CI, 44-93 seconds; p = 0.000014), or a reduction in interpretation time to 67% of the time without the CAD system. Use of the concurrent-read CAD system for interpretation of screening ABUS studies of women with dense breast tissue who do not have symptoms is expected to make interpretation significantly faster and produce noninferior diagnostic accuracy compared with interpretation without the CAD system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.