Abstract

The transverse profilograph has been recognized as one of the most accurate devices for the measurement of rut depth. However, interpretation of surface transverse profile measurements poses a major challenge in determining the contributions of the different layers to rutting. A literature review has shown that the actual rutting mechanism can be estimated from a surface transverse profile for determination of the relative contribution of the layers to rutting. Unfortunately, much of the research yielded no verification or data. In addition, some techniques presented cannot be used if the rut depth is not well pronounced. Other techniques may be costly and time-consuming. The present research developed an approach that integrates (a) falling weight deflectometer and core data along with 3.6-m transverse profile measurements to assess the contributions of different pavement layers to rutting and (b) identifies the presence (or absence) of instability within the asphalt surface layer. This approach can be used regardless of the magnitude of the rut depth. On the basis of the analysis conducted, absolute rut depth should not be used to interpret the performance of the asphalt mixture. In addition, continued instability may not result in an increase in rut depth because the rutted basin broadens as traffic wander compacts or moves the dilated portion of the mixture. The approach developed appears to provide a reasonable way to distinguish between different sources of rutting. The conclusions drawn from analysis of the approach agreed well with observations from the trench cuts taken from four sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.