Abstract

ABSTRACTWe report on the use of coplanar transient photoconductivity and post-transit time-of-flight spectroscopy techniques in the study of carrier transport in microcrystalline silicon films prepared over a range of crystallinities. Coplanar samples are susceptible to post-deposition oxidation and reversible adsorption of atmospheric gases, which may alter the apparent density of states. Coplanar measurements suggest lower deep defect densities in more highly crystalline films, but this is due at least in part to an increased occupancy of these states. A comparison of results obtained using both techniques suggests anisotropic transport, with reduced band tailing (greater structural order) along the direction of film growth, a larger defect concentration around the column boundaries, and a higher defect density within the amorphous tissue than in optimised single-component amorphous silicon films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.