Abstract

During social interaction humans extract important information from tactile stimuli that can improve their understanding of the interaction. The development of a similar capability in a robot will contribute to the future success of intuitive human–robot interaction. This paper presents a thin, flexible and stretchable artificial skin for robotics based on the principle of electrical impedance tomography. This skin, which can be used to extract information such as location, duration and intensity of touch, was used to cover the forearm and upper arm of a full-size mannequin. A classifier based on the ‘LogitBoost’ algorithm was used to classify the modality of eight different types of touch applied by humans to the mannequin arm. Experiments showed that the modality of touch was correctly classified in approximately 71% of the trials. This was shown to be comparable to the accuracy of humans when identifying touch. The classification accuracies obtained represent significant improvements over previous classification algorithms applied to artificial sensitive skins. It is shown that features based on touch duration and intensity are sufficient to provide a good classification of touch modality. Gender and cultural background were examined and found to have no statistically significant effect on the classification results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.