Abstract

The longitudinal relaxation times of (13)C nuclei and NOE enhancement factors for 2-bromopyridine (1), 6-bromo-9-methylpurine (2), 3,5-dibromopyridine (3), 2,4-dibromopyrimidine (4), and 2,4,6-tribromopyrimidine (5) have been measured at 25 °C and B0 = 11.7 T. The most important contributions to the overall relaxation rates of nonbrominated carbons, i.e., the relaxation rates due to the (13)C-(1)H dipolar interactions and the shielding anisotropy mechanism, have been separated out. For 3 and 5, additionally, the T2,Q((14)N) values have been established from (14)N NMR line widths. All of these data have been used to determine rotational diffusion tensors for the investigated molecules. The measured saturation recovery curves of brominated carbons have been decomposed into two components to yield relaxation times, which after proper corrections provided parameters characterizing the scalar relaxation of the second kind for (13)C nuclei of (79)Br- and (81)Br-bonded carbons. These parameters and theoretically calculated quadrupole coupling constants for bromine nuclei have allowed the values of one-bond (13)C-(79)Br spin-spin coupling constants to be calculated. Independently, the coupling constants and magnetic shielding constants of the carbon nuclei have been calculated theoretically using the nonrelativistic and relativistic DFT methods F/6-311++G(2d,p)/PCM and so-ZORA/F/TZ2P/COSMO (F = BHandH or B3LYP), respectively. The agreement between the experimental and theoretical values of these parameters is remarkably dependent on the theoretical method used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.